Microeconomics Pre-sessional September 2016

Sotiris Georganas
Economics Department
City University London

Organisation of the Microeconomics Pre-sessional

- Introduction
- Demand and Supply
- Consumer Theory
- Problems - Refreshing by Doing
- Theory of the Firm
- Problems - Refreshing by Doing

10:30-11:10
Break
11:25-13:00
Lunch Break
10:00-10:30

14:00-14:30

14:30-15:30
Break
15:45-16:30

Outline

1. The production function

- Marginal and average product
- Isoquants
- Marginal Rate of Technical Substitution
- Elasticity of substitution
- Returns to scale

2. Cost and cost minimization
3. Cost functions

- Long-run vs. short-run

1. Production function

- The production function tells us the maximum possible output that can be attained by the firm for any given quantity of inputs.

$$
Q=f(L, K, \ldots)
$$

- Definitions:
- INPUTS (or factors of production): Productive resources, such as labor (L) and capital equipment (K), that firms use to manufacture goods and services
- OUTPUT: Amount of goods and services produced by the firm
- Technology determines the quantity of output that is feasible to attain for a given set of inputs.

1. Production function

Production set: set of all technically feasible combinations of inputs and outputs

A technically efficient firm is attaining the maximum possible output from its inputs (using whatever technology is appropriate)

Example: $\mathrm{Q}=\mathrm{f}(\mathrm{L})$

$f(\mathrm{~L})$ is the total product function

1. Production function

Marginal product of an input is the change in output that results from a small change in an input holding the levels of all other inputs constant.

Example: $\quad Q=f(L, K)$

$$
\begin{array}{ll}
M P_{L}=\frac{\text { changeintotal product }}{\text { changeinquantity of labour }}=\frac{\Delta Q}{\Delta L} \quad \text { (holding } K \text { constant) } \\
M P_{K}=\frac{\text { change in total product }}{\text { changein quantity of capital }}=\frac{\Delta Q}{\Delta K} \quad \text { (holding } L \text { constant) }
\end{array}
$$

1. Production function

The law of diminishing marginal returns states that marginal products (eventually) decline as the quantity used of a single input increases.

Example: $\quad Q=f(L)$

1. Production function

Average product of an input is equal to the average amount of oputput per unit of input.

$$
\begin{aligned}
Q & =f(L, K) \\
A P_{L} & =\frac{\text { total product }}{\text { quantity of labour }}=\frac{Q}{L} \\
A P_{K} & =\frac{\text { total product }}{\text { quantity of capital }}=\frac{Q}{K}
\end{aligned}
$$

1. Production function

Isoquants

- Isoquants: combinations of inputs that produce the same level of output
- Two-input example: $\mathrm{Q}=\mathrm{q}(\mathrm{K}, \mathrm{L})$
- Substitution between inputs (i.e. physicians and nurses)
- Different isoquants represent different output levels

All combinations of (L, K) along the isoquant produce 20 units of output.
$Q=10$

Isoquants

- Marginal rate of technical substitution measures the rate at which the quantity of an input, K, can be decreased, for every one-unit increase in the quantity of another input, L, holding the quantity of output constant

$$
\begin{gathered}
\mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=-\Delta \mathrm{K} / \Delta \mathrm{L} \\
\mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=\mathrm{MP}_{\mathrm{L}} / \mathrm{MP}_{\mathrm{K}}
\end{gathered}
$$

Isoquants

- Marginal rate of technical substitution measures the rate at which the quantity of an input, K, can be increased, for every one-unit decrease in the quantity of another input, L, holding the quantity of output constant

$$
\begin{gathered}
\mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=-\Delta \mathrm{K} / \Delta \mathrm{L} \\
\mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=\mathrm{MP}_{\mathrm{L}} / \mathrm{MP}_{\mathrm{K}}
\end{gathered}
$$

- Example:

$$
\mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=-\Delta \mathrm{K} / \Delta \mathrm{L} \quad \mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}=\mathrm{MP} \mathrm{~L}_{\mathrm{L}} / \mathrm{MP}_{\mathrm{K}}
$$

Elasticity of substitution

- The elasticity of substitution measures how easy it is for a firm to substitute one input, L, for other input, K, as we move along an isoquant (holding other inputs and the quantity of output constant)

$$
\sigma=\frac{\% \text { change in capital-labour ratio }}{\% \text { change in } \mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}}=\frac{\% \Delta(\mathrm{~K} / \mathrm{L})}{\% \Delta \mathrm{MRTS}_{\mathrm{L}, \mathrm{~K}}}
$$

Special production functions

- Cobb-Douglas
- Linear (perfect substitutes)
- Perfect complements
(similar to special utility functions)

Returns to scale

How much will output increase when ALL inputs increase by a particular (percentage) amount?

$$
R T S=\frac{\% \Delta \mathrm{Q}}{\% \Delta(\mathrm{all} \text { inputs })}
$$

Returns to scale

- Increasing returns to scale $\rightarrow 1 \%$ increase in all inputs results in a greater than 1% increase in output, then the production function exhibits increasing returns to scale.
- Constant returns to scale $\rightarrow 1 \%$ increase in all inputs results in exactly a 1% increase in output, then the production function exhibits.
- Decreasing returns to scale $\rightarrow 1 \%$ increase in all inputs results in a less than 1% increase in output, then the production function exhibits.

$$
R T S=\frac{\% \Delta \mathrm{Q}}{\% \Delta(\text { all inputs })}
$$

Returns to scale -example

Differences between production and utility function

Production Function	Utility Function
Output from input	Utility level from purchases
Derived from technologies	Derived from preferences
Cardinal (given amount of inputs yields a unique and specific amount of output)	Ordinal
Marginal product	Marginal utility
Isoquant (all possible combinations of inputs that just suffice to profuce a given amount of output)	Indifference curve
Marginal rate of technical substitution	Marginal rate of substitution

2. Costs

- Cost of all inputs used in the production function
- Input bundle ($x_{1}, x_{2}, \ldots, x_{n}$) where x_{i} is the quantity of the input used
- Input prices ($p_{1}, p_{2}, \ldots, p_{n}$)
- Total cost of input vector
- $\mathrm{C}=\mathrm{p}_{1} \mathrm{x}_{1}+\mathrm{p}_{2} \mathrm{x}_{2}+\ldots+\mathrm{p}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
- Two-input example:
- $C=p_{1} x_{1}+p_{2} x_{2}$

2. Costs

- $C=p_{L} L+p_{K} K$ represents an isocost line
- It captures input-cost relationship

- Represents all combinations of inputs that the producer can pay for a given budget (C)

2. Costs

- $C=p_{L} L+p_{K} K$ represents an isocost line
- Slope of isocost:

2. Costs

- $C=p_{L} L+p_{K} K$ represents an isocost line
- Isocost will shift outwards the greater the cost of production inputs (total cost C), prices constant

2. Costs

- Output-cost relationship (long-run!)
- Economic efficiency:
- Max output for specific budget C

2. Costs

- Economic efficiency:
- Min cost given a level of output

2. Costs

- Max/Min problem have same solution

$$
\left\{\begin{array}{cc}
\text { Max } & Q(L, K) \\
\text { st } & p_{L} L+p_{k} K=C
\end{array}\right\} \quad\left\{\begin{array}{cc}
\text { Min } & p_{L} L+p_{k} K \\
\text { st } & Q(L, K)=Q
\end{array}\right\}
$$

Solution :

$$
\begin{aligned}
& L^{*}\left(p_{L}, p_{k}, C\right) \\
& K^{*}\left(p_{L}, p_{k}, C\right)
\end{aligned}
$$

Solution :

$$
\begin{aligned}
& L^{*}\left(p_{L}, p_{k}, Q\right) \\
& K^{*}\left(p_{L}, p_{k}, Q\right)
\end{aligned}
$$

2. Costs

(Interior solutions)

- Max/Min problem have same solution

$$
M R T S_{L K}=\frac{M P_{L}}{M P_{K}}=\frac{p_{L}}{p_{K}} \quad \text { or } \quad \frac{M P_{L}}{p_{L}}=\frac{M P_{K}}{p_{K}}
$$

- Ratio denotes output in physical units over price
- When combination of inputs is efficient, the marginal product obtained from extra spending is the same for both inputs

2. Costs

(Corner solutions)

- Max/Min problem have same solution

2. Costs

Definitions:

- Opportunity cost of a resource is the value of that resource in its best alternative use.
Example: $\quad £ 100$ in facilities yields $£ 800$ $£ 100$ in R\&D yields $£ 1000$ revenue
Opportunity cost of investing in facilities $=£ 1000$
Opportunity cost if investing in R\&D $=£ 800$
Opportunity cost depends on how we specify alternatives.
- Sunk cost: are costs that must be incurred no matter what the decision is. These costs are not part of opportunity costs.
Example: It costs $£ 5 \mathrm{M}$ to build a factory and has no alternative uses. $£ 5 \mathrm{M}$ is sunk cost for the decision of whether to operate or shut down the factory
September 16

2. Cost minimisation problem

In the SHORT-RUN...

Suppose that one factor (say, K) is fixed.
The firm's short-run cost minimization problem is to choose quantities of the variable inputs so as to minimize total costs...
given that the firm wants to produce an output level Q_{0}...
and under the constraint that the quantities of the fixed factors do not change.

2. Cost minimisation problem

In the LONG-RUN...

$$
\left\{\begin{array}{cc}
\operatorname{Min}_{L, K} & p_{L} L+p_{k} K \\
\text { st } & Q(L, K)=Q
\end{array}\right\}
$$

Note: L, K are the variable inputs and $p_{L} L+p_{k} K$ is the total variable cost

Constraint: $Q(L, K)=Q$

2. Cost minimisation problem

In the SHORT-RUN...

$$
\left\{\begin{array}{cc}
\operatorname{Min} & p_{L} L+p_{k} \bar{K} \\
s t & Q(L, \bar{K})=Q
\end{array}\right\}
$$

Note: L are the variable inputs and
$\mathrm{p}_{\mathrm{L}} \mathrm{L}$ is the total variable cost \bar{K} is the fixed input and $p_{k} \bar{K}$ is the total fixed cost

Constraint: $Q(L, \bar{K})=Q$

2. Cost minimisation problem

3. Cost Function

$\cdot L R$ average cost function is the long run total cost function divided by output, Q.

That is, the LRAC function tells us the firm' s cost per unit of output...

$$
\mathrm{AC}\left(\mathrm{Q}, \mathrm{p}_{\mathrm{L}}, \mathrm{p}_{\mathrm{K}}\right)=\mathrm{TC}\left(\mathrm{Q}, \mathrm{p}_{\mathrm{L}}, \mathrm{p}_{\mathrm{K}}\right) / \mathrm{Q}
$$

-LR marginal cost function measures the rate of change of total cost as output varies, holding constant input prices.

$$
M C\left(Q, p_{L}, p_{K}\right)=d T C\left(Q, p_{L^{\prime}}, p_{K}\right) / d Q
$$

where: $\mathrm{p}_{\mathrm{L}} \mathrm{p}_{\mathrm{K}}$ and constant

3. Cost Function

AC, MC (\$/yr)

Q (units/yr)

3. Cost Function

- Relationship between AC and MC
- Suppose that w and r are fixed...
- If $\mathrm{MC}(\mathrm{Q})<\mathrm{AC}(\mathrm{Q}), \mathrm{AC}(\mathrm{Q})$ decreases in Q .
- If $\mathrm{MC}(\mathrm{Q})>\mathrm{AC}(\mathrm{Q}), \mathrm{AC}(\mathrm{Q})$ increases in Q .

AC,

- If $\mathrm{MC}(\mathrm{Q})=\mathrm{AC}(\mathrm{Q}), \mathrm{AC}(\mathrm{Q})$ is flat with respect to Q .

3. Cost Function

In the SHORT-RUN the total cost function tells us the minimized total cost of producing Q units of output, when (at least) one input is fixed at a particular level.
$\operatorname{STC}\left(\mathrm{Q}, \mathrm{K}_{0}\right)=\operatorname{TVC}\left(\mathrm{Q}, \mathrm{K}_{0}\right)+\operatorname{TFC}\left(\mathrm{Q}, \mathrm{K}_{0}\right)$
Total variable cost (TVC) function is the minimized sum of expenditures on variable inputs at the short run cost minimizing input combinations.

Total fixed cost (TFC) function is a constant equal to the cost of the fixed input(s).

3. Cost Function

SR Total Cost, Total Variable Cost and Total Fixed Cost

September 16

3. Cost Function

Long-run Average Cost Function as envelope curve around the set of short-run average cost curves
$£$ Per Unit

